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Abstract: This paper proposes a method of injected alternating current-field measurement (IAC-FM)
for detecting orthogonal cracks in the piston rod of a hydraulic cylinder in a gate hoist. Using this
method, both longitudinal and transverse cracks can be detected at the same time. An alternating
magnetic field is produced inside the steel rod by axially injecting an alternating current into the rod.
The longitudinal crack perturbs the circumferential magnetic field, whereas the transverse crack per-
turbs the current in the axial direction. Analyses of the behaviors of the magnetic field in the vicinity
of the cracks were proposed, using a three-dimensional finite element software. An experimental
setup was built and validation experiments were performed. The effects of the operating frequency
and scan path were also studied. The results verified the feasibility of the IAC-FM method and
showed great potential for the inspection of in-service hydraulic cylinders of gate hoists.

Keywords: injected alternating current field measurement; nondestructive testing; piston rod;
gate hoist

1. Introduction

The gate hoist is a very important mechanical structure used for opening and closing
gates in water conservancy projects. A hydraulic cylinder is a vital component of a gate
hoist which usually operates under load. During long-term service, both longitudinal and
circumferential cracks may appear on the surface of the piston rod of the hydraulic cylinder,
and affect the lifespan of the gate hoist. In-service nondestructive testing (NDT) techniques
for the piston rods are in great need in the industry.

The harsh environmental conditions, metal coating and mud covering of in-service
hydraulic cylinders of gate hoists makes the inspection difficult. Many conventional NDT
methods face challenges when applied to the piston rod of a hydraulic cylinder. Machine
vision methods can be applied to inspect cracks in piston rods [1,2]. The inspection has high
sensitivity and efficiency, however, if dust, mud and oil are covering the surface, the results
may become unreliable. Many other electromagnetic NDT methods, such as eddy current
testing (ECT) and magnetic flux leakage (MFL) testing can also be applied to detect surface
cracks. In the MFL method, a magnetizer consisting of magnets or coils is required [3–6].
To magnetize the steel bar into saturation, the magnetizer usually has a large size and
weight. Thus, they are not suitable for in-service inspection. ECT has also been applied to
test steel specimens [7–9], whereby the probe is placed above the specimen surface. Due to
the existence of metal coating, part of the energy is absorbed and the testing signal is affected.

In order to reduce the influence of surface coverage, an injected alternating current-
field measurement (IAC-FM) method is proposed in this paper. Instead of excitation coils
and magnetizers, an alternating current is directly injected into the piston rod to magne-
tize it uniformly. The technique of directly injecting a current into a specimen has been
used in some previous studies, especially the direct current potential drop (DCPD) and
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alternating-current potential drop (ACPD) [10–13]. In some other studies, after injecting
a current into a specimen, either the magnetic field or electric field above the specimen is
extracted to evaluate the defects [14–16]. In this study, an alternating current is injected
into the piston rod axially. According to the Biot–Savart law, magnetic fields are generated
in the circumferential direction. Since defects are easier to detect when they are perpendic-
ular to the source field, the IAC-FM method is suitable for the inspection of longitudinal
cracks with magnetic field perturbation and transverse cracks with current perturbation.

The remainder of the paper is organized as follows. In Section 2, the distribution of
currents and magnetic fields are analyzed. Section 3 presents the finite element simulation
results to show that cracks in both directions can be detected. Finally, experimental veri-
fication of the IAC-FM is presented and the effects of operating frequency and scan path
are discussed.

2. Theories of IAC-FM

In the proposed IAC-FM method, currents are injected directly into the rod. Thus,
the current is in the axial direction whereas the magnetic field is in the circumferential
direction. These characteristics provide the benefit of simultaneously detecting longitudinal
and transverse cracks at the same time. In order to better illustrate the distribution of
the electromagnetic fields, a theoretical model is developed in this section.

2.1. Theoretical Model

The piston rod is regarded as an infinitely long cylindrical conductor with a radius of
R, as depicted in Figure 1. Since the current is injected along the axial direction, J has only
z component Jz. According to Maxwell’s equations and Ohm’s law, the magnetic vector
potential A in the conductor conforms to the following equation [17]

1
µ
∇× (∇×A) = −jωσA (1)

where ω, µ and σ are angular frequency, magnetic permeability and electrical conductivity,
respectively, j is the imaginary number.
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Figure 1. Piston rod with injected current.

Expand Equation (1) in cylindrical coordinates, the following equation can be obtained:

1
r

∂

∂r

(
r · ∂A

∂r

)
+

1
r2

∂2A
∂ϕ2 +

∂2A
∂z2 − jωµσA = 0 (2)

According to Ohm’s law and Faraday’s law of induction, the vector potential A and
current density J satisfy: J = σE = −jωσA, where E is the electric field. Thus, A only has
only z component Az. Then, Equation (2) can be simplified as:

r2 ∂2 Az

∂r2 + r
∂Az

∂r
− jωµσr2 Az = 0 (3)

According to the general solution to Bessel equation, Az can be expressed as

Az = C1J0(kr) + C2Y0(kr) (4)
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where k =
√
−jωµσ, J0(.) is the zero order Bessel function of the first kind and Y0(.) is

the zero order Bessel function of the second kind. According to the property of Bessel
functions, Y0(x) goes to infinity when x approaches 0. To guarantee the convergence of Az
at r = 0, C2 must be equal to 0. Then, Equation (4) can be written as:

Az = C1J0(kr) (5)

Accordingly, Jz = −jωσC1J0(kr). Assume the current density at r = R is JR, then
the boundary condition is Jz | r=R = JR, and Jz can be expressed as

Jz = JR ·
J0(kr)
J0(kR)

(6)

It is known that the total current inside the rod is I. JR can be obtained by integrating
the Equation (6):

JR =
IkJ0(kR)

2πRJ1(kR)
(7)

Therefore, the current density at any position of the rod can be expressed as

Jz =
IkJ0(kr)

2πRJ1(kR)
(8)

The magnetic flux density B satisfies B = ∇×A, thus B has only ϕ component Bϕ,
which can be expressed as

Bϕ =
µIJ1(kr)

2πRJ1(kR)
(9)

To sum up, the current density and magnetic flux density in the cylindrical conductor are:
Jz =

IkJ0(kr)
2πRJ1(kR)

Bϕ = µIJ1(kr)
2πRJ1(kR)

(10)

2.2. Distribution of Eddy Current and Magnetic Field

In order to graphically illustrate the distribution of eddy currents and magnetic fields,
specific values were considered to perform the numerical calculation. The radius of the rod
was set to 20 mm and the relative permeability and conductivity were set to 100 and
3 × 107 S/m. The frequency of alternating current was set to 10 kHz, 50 kHz and 100 kHz,
and the total current was 1 A. The variations of Jz and Bϕ with the radius are shown
in Figure 2. It can be concluded from Figures 1 and 2 that the magnetic field and current are
both concentrated on the surface of the rod, which is beneficial for the inspection of surface
cracks. In addition, the magnetic field and current are in orthogonal directions, making
the detection of both longitudinal and transverse cracks possible.
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Figure 2. Distribution of eddy current and magnetic flux density along radius in the analytical model:
(a) variation of current density with radius; (b) variation of magnetic flux density with radius.

3. Finite Element Simulation

It is relatively difficult to include defects in the theoretical model due to the complex
boundary conditions. Thus, finite element simulation was further carried out to analyze
the characteristics of defect signals. Before applying finite element simulation to rods with
cracks, a cross-verification was made for fields in intact rods between analytical model
and finite element simulations. A simulation was performed with the same excitation
parameters and material properties used in the analytical model, and the results are shown
in Figure 3. It can be seen that these results are in agreement with the results obtained from
the analytical model (insets of Figure 2).
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A 100×Φ20 mm piston rod was also constructed in the simulation, with an alternating
voltage of 10 kHz and 1 V. The contour plot of the magnetic field is shown in Figure 4. As we
can see, the magnetic field distributes uniformly along the circumference and concentrates
at the rod surface.
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To further study the signal characteristics, a longitudinal crack with the dimension of
7 mm (length) × 1 mm (width) × 1 mm (depth) was created in the piston rod, and the mag-
netic field above the crack was extracted with a lift-off of 0.4 mm. The extracted signal is
shown in Figure 5, where the peak of the signal corresponds to the center of the crack. In the
region away from the crack, the most magnetic flux concentrated in the steel rod due to its
high permeability, thus the magnetic field extracted above the rod has relatively small value.
In the region around the crack, the change of magnetic reluctance forces the magnetic field
to leak into the nearby air, and causes the increase of magnetic flux density in the signal.
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Figure 5. Magnetic field over the longitudinal crack.

For transverse cracks, since the magnetic field was parallel to the crack, little perturba-
tion occurs. However, the variation in the magnetic field produced by the perturbation of
the current is distinct. Figure 6 shows the principle of current perturbation. By injecting
an alternating current (current density j0) into the steel bar, an alternating magnetic field B0
will be produced around the workpiece in the air. In the area without cracks, the current
density is uniform. When the current flows around the vicinity of the transverse crack,
it will not only be disturbed but also change the exterior magnetic field, with ∆j and ∆B
produced, which can be obtained by coils scanning axially over the crack.
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In the simulation for transverse crack testing, three scanning paths were set above
the crack. Path No. 2 was above the center of the crack. Path No. 1 and No. 3 were above
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the crack edges, both 3 mm away from path No. 2, as shown in Figure 7. The tangential
magnetic field (Bt) and normal magnetic field (Bn) in three paths is shown in Figures 8 and 9.
In the region away from the crack, the current distributed uniformly, so the extracted
magnetic field was a constant value. In the vicinity of the crack, the currents passed around
the crack from its ends and bottom and caused perturbation to the magnetic field above
the crack. In the center of the crack, the currents mainly bypassed the crack from the bottom,
thus were still in the axial direction. Accordingly, there was no magnetic field perturbation
for Path No. 2.
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4. Experiments and Discussion

In order to verify the abovementioned principle, an experimental setup was built as
shown in Figure 10. The length of the standard crack is 10 mm, width is 0.5 mm and depth
is 0.5 mm. A 100 × Φ20 mm piston rod with a standard longitudinal crack and a standard
transverse crack was used as testing piece. An alternating current was injected into the steel
bar from the two ends. The voltage between the two ends was 1 V. The magnetic sensor
was a 3 mm (diameter) × 1 mm (height) × 0.08 mm (wire diameter) inductance coil with
50 turns.
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The results of the experiments are shown in Figure 11. The coil axis is along the tan-
gential line of the rod surface. The scan paths of both longitudinal and transverse cracks
are above the center of the cracks. This indicates that the IAC-FM method is able to detect
the longitudinal and transverse cracks at the same time.
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In the IAC-FM method, the injected alternating current plays an important role
in the excitation. Hence, the optimal operating frequency is significant for the detection
sensitivity. Frequencies from 10 kHz to 100 kHz with an interval of 10 kHz are compared
for the detection of both longitudinal and transverse cracks. The amplitude of the output
voltage of the testing signal determines the detection sensitivity. The results in Figure 12
indicate that the output of the longitudinal crack testing signal decreases with its frequency.
Although the current density increases with the frequency on the surface, the voltage of
the AC generator is fixed in this experiment, which causes a decrease in the output of
the longitudinal crack. The results of the transverse crack show that it is not affected by
the frequency in this condition.
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From the simulation results of transverse crack testing, the testing signal is dependent
on the scan path. To obtain the Bn and Bt in the experiment, two coils were used. One
coil had its axis along the normal direction to obtain Bn and the other had its axis along
the tangential direction to obtain Bt. Similar to the simulation condition, three scan paths
were set as comparisons. Path B was above the center of the crack. Path A and Path C
were, on the other hand, both 2.5 mm away from Path B. The lift-off values of all paths
were the same as 0.4 mm. The results are shown in Figures 13 and 14. From the experiment
results and simulation results, the signal features agree with each other. Through these
features of the magnetic field, cracks can be quantitatively evaluated.
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Figure 13. Experimental testing signal of Bn for transverse cracks at different paths: (a) path A;
(b) path B; (c) path C.
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5. Conclusions

The principle of IAC-FM is analyzed in this paper. Based on Maxwell’s equations,
a theoretical model was built that gives the distribution of a magnetic field and current
when there is no crack in the piston rod. The results show that the magnetic field is along
the circumferential direction and the current is along the axial direction. Most magnetic field
and currents concentrate in the rod surface at 0.3 mm under the excitation frequencies from
10 kHz to 100 kHz. From the 3D FEM simulation results and the experiment results, it is
shown that cracks with a depth of 0.5 mm can be easily detected, in which the longitudinal
crack can be detected due to the perturbation of magnetic field, and transverse cracks can
be detected due to the perturbation of current. The study of the influence of excitation
frequency showed that the testing signal of longitudinal cracks decrease linearly with
excitation while the signals of transverse cracks are almost independent of the excitation
frequency. The results in the paper show that the proposed method has great potential for
the inspection of piston rod of hydraulic cylinder.
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