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Abstract: Although many adaptive techniques for active vibration reduction have been designed
to achieve optimal performance in practical applications, few are related to reinforcement learning
(RL). To explore the best performance of the active vibration reduction system (AVRS) without
prior knowledge, a self-adaptive parameter regulation method based on the DDPG algorithm was
examined in this study. The DDPG algorithm is unsuitable for a random environment and prone to
reward-hacking. To solve this problem, a reward function optimization method based on the integral
area of the decibel (dB) value between transfer functions was investigated. Simulation and graphical
experimental results show that the optimized DDPG algorithm can automatically track and maintain
optimal control performance of the AVRS.

Keywords: self-adaptive; deep deterministic policy gradient (DDPG) algorithm; active vibration
reduction system (AVRS)

1. Introduction

Due to the increasing requirement for accuracy and stability in research and manu-
facturing, the issue of micro-vibration, which widely exists in engineering applications,
has become a critical factor that reduces the performance of high-precision machines. For
example, as the state-of-art transmission electron microscope (TEM) has met the VC-G [1,2]
or higher vibration standard (vibration velocity lower than 0.78 µm/s), the performance
requirements of the AVRS are more stringent than before.

Active vibration control technology (AVCT) originated from the semi-active control
methods represented by skyhook damping [3], for which it is difficult to obtain the absolute
inertial reference frame (AIRF) that is required in practice. In a previous paper [4], a
virtual skyhook damping isolator was proposed without the AIRF, which used a double
cascade damping structure to suppress the resonance peak. In the engineering field, various
high-precision instruments are equipped with passive vibration isolation systems, such as
pneumatic or coil springs, which make them more sensitive to low-frequency vibrations.
Because of the poor performance of passive and semi-active damping technology at low
frequencies, the AVCT technique is urgently needed. The combination of AVCT and passive
vibration isolators is one of the mainstream methods used today, in which passive isolators
attenuate high-frequency vibrations while AVCT reduces the low-frequency vibrations. The
AVRS overcomes the disadvantages of passive vibration reduction systems by integrating
the active execution components.

Control algorithms [5–8] based on closed-loop PID have been proposed. Most of these
methods are aimed at achieving the ideal dynamic capability of skyhook damping while
balancing the robustness and stability of the system. Although appropriately increased
feedback control (FBC) gain can enhance the vibration reduction effect, the adjustment
range of parameters is greatly restricted by factors such as noise, decoupling accuracy,
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and ground and table disturbance [9]. Furthermore, the FBC response speed is greatly
constrained by inherent algorithm delay and the hysteresis of the actuators.

The feed-forward control (FFC) strategy was first proposed to suppress the direct
disturbances of AVRS, while the compensation control signal can be calculated from its
regularity [10]. Under the premise of obtaining an accurate FF model, FFC can theoretically
eliminate the influence of ground vibration on the platform. A previous paper [11] pre-
sented several prediction methods for FF signals and analyzed their tracking performance
using filters. Irrespective of the FF signal prediction error changes with the increase in the
frequency, proper parameters in FFC do not affect the closed-loop stability, which is merely
determined by the loop transfer function [12].

To further improve the performance of AVRS, the FBC and FFC strategies were in-
corporated into a six-degree-of-freedom (DOF) isolation system that is based on absolute
accelerator measurement [13], where FBC uses a genetic algorithm to suppress payload
vibration, and FFC prevents ground vibration from transmitting to the platform.

Note that because of the hysteresis and the low response speed of the voice-coil
motor, together with the high-order bending mode of the system, not only can the AVRS
operating at fixed parameters be unstable, but it is also limited to suppressing the vibration
below 100 Hz rather than the entire frequency range [14]. For the frequency above 100 Hz,
vibration attenuation of AVRS mainly relies on passive isolation, while the AVCT focuses
on the improvement of the low-frequency performance.

Furthermore, although the ideal model of AVRS is difficult to obtain, together with
the rapid development of AVCT, various advanced control methods have been proposed
for tracking the optimal parameters according to its specific applications [15–17]. However,
few of these involve reinforcement learning (RL), which is one of the most popular branches
in machine learning (ML) since Lee Sedol was defeated by AlphaGo in the board game
Go. ML is excellent because it generates behavior directly from data of intelligent learning,
rather than through complex programming [18]. RL is a trial-and-error learning algorithm
with scarce guidance, whose goal is to train an agent to obtain the control objective or
to enhance its performance through constantly interacting with the environment until
achieving the best strategy, which is evaluated by the value of a reward function [19,20].
Although the Q-learning algorithm has been applied to realize automatic tuning of online
parameters in the active structural control system [21], it is not suitable for continuous
actions and its working frequency at 10 Hz is much lower than the ultra-precision vibration
reduction range.

In this paper, based on the accurate mathematical derivation of the critical components
in AVRS, a joint analysis model of ADAMS and MATLAB for AVRS is proposed. The
mechanical structure of AVRS was presented elsewhere [13,14]. As the six DOF AVRS can
be transformed into six independent single DOF sub-systems by the modal decomposi-
tion technique, a detailed single-channel block diagram of a vertical FB and FF control
scheme can be produced by the transfer function of each component module, respectively.
Then, the advanced DDPG algorithm is integrated into the FB and FF control scheme to
determine the optimal control without considering the accuracy of the system model and
the nonlinearity of parameters. DDPG, which is based on Actor-Critic [22] and Deep-Q-
Network (DQN) algorithms [23] was proposed in [24]. It combines deep neural networks
with a deterministic policy gradient (DPG) algorithm [25] and is one of the most popular
algorithms for continuous actions. Simulation results show that the DDPG algorithm can
achieve effective convergence and high stability in the optimal vibration reduction region.
In practical applications, to overcome the invalidation of self-learning and the tendency
toward reward-hacking of DDPG for random signals, in contrast to the tuning methods
proposed in [26–28], this study introduced an optimal calculation method of the reward
function. Experiment results validated that the agent trained by this method has superior
decision-making performance and excellent vibration damping effects.
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2. Principle of Active Vibration Isolation
2.1. The Principle of Active Vibration Control

The single DOF mass-spring damping system with active control used in this research
is shown in Figure 1.
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Figure 1. The single DOF mass-spring damping system with active control.

The vibration signals are measured by absolute velocity sensors and the control forces
are generated by voice-coil motors. When ignoring the gravity and the static displacement
caused by it, the linear ordinary differential equations in the equilibrium position of the
system can be rewritten as below:

m
dvp

dt
+ c
(
vp − vb

)
+ k
(∫

vpdt−
∫

vbdt
)
= f (vp, vb) + fnoise (1)

where vp and vb are the measured absolute velocity of the payload and ground, respectively;
m, c, and k are the system payload, equivalent damping, and stiffness, respectively; fnoise
is the plate-top disturbance signal; f

(
vp, vb

)
is the motor driving force function with vp

and vb as the dependent variables. Since the vibration amplitude of AVRS applied to ultra-
precision equipment is small, the inverse electromotive force generated by the velocity
difference between the coils and the magnet in the voice-coil motor can be ignored, so
that the thrust coefficient KT of the voice-coil motor is approximately constant. Then, the
voice-coil motor output force f

(
vp, vb

)
can be considered to have an approximately linear

relationship with vp and vb.

2.2. FB and FF Control Theory

Enlightened by the idea of independent channel control design that was based on
the different disturbance transmission paths [29], and referring to the principle of force
superposition of the FB and FF hybrid control system, the control force, generated by
the voice-coil motor, can be decomposed into two parts: one provided by the FFC and
the other by the FBC. It is worth noting that the driving forces of the FBC and FFC are
not independent of each other in practical applications. It was found that the FFC will
effectively prevent the ground disturbance that will transmit to the platform [11], and the
corresponding FBC output force becomes smaller because the vibration amplitude of the
payload decreases.

Here, s represents the Laplace operator. Assuming that the initial speed of the platform
is zero, and taking fnoise and vb(s) as external disturbance sources, the value of FF force
fffc(s) is determined by vb(s) and has nothing to do with vp(s). Without considering
the nonlinear factors of sensors, signal amplifier circuits, and actuators, the relationship
between fffc(s) and the ground detection signal vb(s) can be expressed as follows:

fffc(s) = Hffc(s)vb(s) (2)
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where Hffc(s) denotes the velocity–force transfer function.
Now, the dynamic characteristics of the AVRS in terms of two aspects during the

feedback control are investigated in the following paragraphs.
(1) When the AVRS is open-looped, according to the principle of speed superposition,

the platform speed signal vp(s) can be decomposed into two parts, v1(s) and v2(s). Here,
v1(s) is the component of platform velocity transmitted from ground disturbance vb(s)
under the control of fffc(s), while v2(s) is caused by fnoise. Then, the expression of the
system’s kinematic transfer functions described in Figure 1 is given by the Equation (3):{

msv1(s) + c[v1(s)− v(s)] + k
s [v1(s)− v(s)] = − fffc(s)

msv2(s) + cv2(s) + k
s v2(s) = fnoise(s)

(3)

The equations to calculate v1(s) and v2(s) can be presented as follows:{
v1(s) =

(cs+k)−sHffc(s)
ms2+cs+k vb(s)

v2(s) =
fnoise(s)s

ms2+cs+k

(4)

Therefore, when the system is open-looped, the platform speed can be obtained by:

vp(s) = v1(s) + v2(s) (5)

By substituting Equation (4) into Equation (5), finally, vp(s) can be expressed by
Equation (6) as below:

vp(s) =
s

ms2 + cs + k

[(
cs + k

s
− Hffc(s)

)
vb(s) + fnoise(s)

]
(6)

Considering the combined effects of vb(s) and fnoise(s), the FB force ffbc(s) can be
calculated by Hfbc(s) multiplied by vp(s), which is expressed in Equation (7) below:

ffbc(s) = Hfbc(s)vp(s) (7)

where Hfbc(s) stands for the forward channel transfer function between the platform velocity
vp(s) and feedback force ffbc(s). Then, substituting Equation (6) into Equation (7), yields:

ffbc(s) = Hfbc(s)
s

ms2 + cs + k

{[
cs + k

s
− Hffc(s)

]
vb(s) + fnoise(s)

}
(8)

From Equation (8), it can be seen that ffbc(s) contains the term Hffc(s), which indicates
that the influence of ground disturbance has not been eliminated by fffc(s). Therefore, the
platform residual disturbance from ground disturbance, together with fnoise(s), will be
suppressed by the force component ffbc(s). Thus, before the closed-loop control is applied,
the motor output force fM(s) is calculated as follows:

fM(s) = fffc(s) + ffbc(s) (9)

According to the above formula, the relationship between the motor driving force
fM(s) and ground vibration vb(s), together with surface disturbance fnoise(s), can be
obtained as below:

fM(s) = Hfbc(s) s
ms2+cs+k

{
cs+k

s + ms2+[c−Hfbc(s)]s+k
Hfbc(s)s

Hffc(s)
}

vb(s)
+Hfbc(s) s

ms2+cs+k fnoise(s)
(10)

(2) In the closed-loop system, the motor force acts on the system at the value fM(s)
shown in Equation (10), and the table vibration is rapidly attenuated due to the effect of
fM(s). As the output of the controller remains the same before being updated, the dynamic
process of the system from the perspective of computer control can be analyzed. When
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ignoring the response delay of the system, assuming that at some point after the control
loop is closed, the platform velocity under the combined effect of the motor driving force
fM
′(s), vb(s), and fnoise(s) is vp

′(s). This means that dynamic Equation (1) still holds. Then,
the following equations can be derived:{

msvp
′(s) + c

[
vp
′(s)− vb(s)

]
+ k

s
[
vp
′(s)− vb(s)

]
= fnoise(s)− fM

′(s)
fM
′(s) = Hffc(s)vb(s) + Hfbc(s)vp

′(s)
(11)

Simplifying the above equations, vp
′(s) can be obtained in Equation (12):

vp
′(s) =

fnoise(s) + [(c + k/s)− Hffc(s)]vb(s)
ms + c + k/s + Hfbc(s)

(12)

Theoretically, if the system is ideal, the model of FF can be identified as:

Hffc(s) =
cs + k

s
(13)

From the derived formula, it is observed that FFC can eliminate the impact of ground
vibration on the system. Therefore, rather than deteriorating the system’s stability, proper
FFC will improve the robust performance of the system. To better reflect the influence of FF
and FB parameters on the damping performance of AVRS, the vertical vibration transmis-
sibility curve, which is used to analyze the relationship between the ground disturbance
vb(s) and the platform vibration vp

′(s) while ignoring fnoise(s), can be rearranged from the
Equation (12) as:

vp
′(s)

vb(s)
=

(c + k/s)− Hffc(s)
ms + c + k/s + Hfbc(s)

(14)

Compared with the passive curve shown by the red line in Figure 2, the pure FF propor-
tional (P) control effect in the dotted red line is not ideal because it amplifies the amplitude
at the resonant frequency point while suppressing the vibration at high frequencies. The
optimal coefficient value of P is a trade-off between the high- and low-frequency damping
performance. Therefore, merely P in FFC is not sufficient, especially when considering the
high-performance requirements of ultra-precision equipment.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19 
 

It can be seen from the dotted gray line that the integral (I) control mode in FFC has a 
better attenuation effect in the low-frequency domain. Therefore, as shown in the dotted 
green line, it is necessary to adopt the proportional plus integral (PI) control mode in FFC, 
rather than P or I mode. It is worth noting that the simulation results show that the FFC has a 
very limited ability to suppress vibration at the structural resonance frequency. As indicated 
in the dotted blue curve in the figure, the closed-loop P control was added based on 
feed-forward PI control, which can effectively suppress the natural frequency of the plat-
form. It can be seen from the pink line and dotted black line in Figure 2 that, with the increase 
in P, the vibration attenuation effect is better. Not only can the adoption of the closed-loop 
PI mode regulate the equivalent damping, but it changes the equivalent stiffness of the 
system. Although the performance of closed-loop PI control is superior to P in the fre-
quency range below 1 Hz, due to the constraints of the ultra-low frequency detection ac-
curacy of sensors, the closed-loop system usually adopts the P control mode. 

 
Figure 2. The velocity transmissibility of one DOF AVRS in the vertical direction in different situations: 
Passive, FF P control FFCP, FF I control FFCI, FF PI control FFCPI, FB P control based on FF PI con-
trol FBCP+FFCPI, FB big P gain control based on FF PI control FBCBP+FFCPI, FBC big P gain plus I 
control based on FFC PI control FBCBPI+FFCPI. 

In the absolute velocity feedback control system, although the performance of FBC 
will be improved as the feedback control gain increases, the system will be unstable at high 
gains if the influence of the model, the bandwidth of sensors and actuators, the sampling 
rate, etc., are considered [30,31]. In addition, under the control of fixed parameters, AVRS 
may be unstable due to load changes, environmental interference, human operation, and 
other factors. To ensure stability and improve the performance of AVRS, this study aimed 
to introduce the DDPG reinforcement learning algorithm to realize the automatic opti-
mization of control parameters through continuous interaction with the working envi-
ronment. 

3. MATLAB and ADAMS Co-Simulation 
3.1. The Single DOF Model of AVRS in the Vertical Direction 

Due to the complex coupling characteristics of the parameters in the system having six 
degrees of freedom, the AVRS should be transformed into six independent subsystems. To 
conduct the co-simulation, ADAMS and MATLAB were employed to establish a single DOF 
model of AVRS in the vertical direction to study the characteristics of FFC and FBC. In this 
study, ADAMS software was used to simulate the main structure of the system, which is 
supported by four parallel steel springs, and MATLAB was used to build the control system. 
The vertical driving force was established at the center of each spring to simulate the vertical 

Figure 2. The velocity transmissibility of one DOF AVRS in the vertical direction in different situations:
Passive, FF P control FFCP, FF I control FFCI, FF PI control FFCPI, FB P control based on FF PI control
FBCP + FFCPI, FB big P gain control based on FF PI control FBCBP + FFCPI, FBC big P gain plus I
control based on FFC PI control FBCBPI + FFCPI.
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It can be seen from the dotted gray line that the integral (I) control mode in FFC has a
better attenuation effect in the low-frequency domain. Therefore, as shown in the dotted
green line, it is necessary to adopt the proportional plus integral (PI) control mode in FFC,
rather than P or I mode. It is worth noting that the simulation results show that the FFC
has a very limited ability to suppress vibration at the structural resonance frequency. As
indicated in the dotted blue curve in the figure, the closed-loop P control was added based
on feed-forward PI control, which can effectively suppress the natural frequency of the
platform. It can be seen from the pink line and dotted black line in Figure 2 that, with
the increase in P, the vibration attenuation effect is better. Not only can the adoption of
the closed-loop PI mode regulate the equivalent damping, but it changes the equivalent
stiffness of the system. Although the performance of closed-loop PI control is superior
to P in the frequency range below 1 Hz, due to the constraints of the ultra-low frequency
detection accuracy of sensors, the closed-loop system usually adopts the P control mode.

In the absolute velocity feedback control system, although the performance of FBC
will be improved as the feedback control gain increases, the system will be unstable at high
gains if the influence of the model, the bandwidth of sensors and actuators, the sampling
rate, etc., are considered [30,31]. In addition, under the control of fixed parameters, AVRS
may be unstable due to load changes, environmental interference, human operation, and
other factors. To ensure stability and improve the performance of AVRS, this study aimed to
introduce the DDPG reinforcement learning algorithm to realize the automatic optimization
of control parameters through continuous interaction with the working environment.

3. MATLAB and ADAMS Co-Simulation
3.1. The Single DOF Model of AVRS in the Vertical Direction

Due to the complex coupling characteristics of the parameters in the system having
six degrees of freedom, the AVRS should be transformed into six independent subsystems.
To conduct the co-simulation, ADAMS and MATLAB were employed to establish a single
DOF model of AVRS in the vertical direction to study the characteristics of FFC and FBC. In
this study, ADAMS software was used to simulate the main structure of the system, which
is supported by four parallel steel springs, and MATLAB was used to build the control
system. The vertical driving force was established at the center of each spring to simulate
the vertical linear motor in the actual system. By applying white noise excitation to the
base, the passive velocity transmissibility curve, which is critical for model validation, was
acquired and is shown in Figure 3.
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mathematical transfer function model shown by the green line in the same figure. The
red line is the experimental transmissibility curve that was vertically acquired by external
VSE-15D sensors and the LMS-SCADAS test system. The results demonstrate that the
simulation model can still well fit the realistic system below 40 Hz even considering the
influence of the system’s high-frequency noise and high-order modes.

3.2. DDPG Reinforcement Learning Algorithm

The DDPG algorithm is an upgraded version of the Actor-Critic (AC) algorithm shown
in Figure 4. It integrates the advantages of DQN and overcomes the shortcomings of the
Actor-Critic algorithm. It uses a replay memory buffer and soft-update target networks
to realize stable and robust control in large-scale states or continuous action space. In
addition, it adopts the mini-batch method to eliminate the correlation between samples.
Through batch normalization to gain hyper-parameters, the agent is enabled to generalize
across the environments with different scales of state values. The following paragraphs
briefly describe the DDPG algorithm process according to the control flow presented in
Figure 4. Details were previously presented elsewhere [24,32]. It is worth noting that the
DDPG algorithm adopts the AC structure which includes a policy-based neural network
(Policy-net) system and a value-based neural network (Q-net) system. Each consists of
an online network and a target network. The two target networks are updated using the
same software approach, while the two online networks are different: the online Q-net
updates the parameters by minimizing the mean squared error (MSE) as the loss function
(LF) to obtain the maximum value of Q, whereas the online Policy-net updates the network
parameters by training the mini-batch data to achieve an unbiased estimate of the DPG
according to the Monte Carlo method.
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︸ ︷︷ ︸
Targetpolicy−net: 5→6

∣∣∣∣∣∣∣∣θ
Q′


︸ ︷︷ ︸
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− Q
(
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and the DPG can be written as shown in Equation (16):

∇θµ µ|Si ≈
1
N ∑

i
∇a Q

(
S, a|θQ

)∣∣∣
S=Si ,a=µ(Si)︸ ︷︷ ︸

OnlineQ−net: 9→10→11

∇θµ µ(S|θµ)|Si︸ ︷︷ ︸
OnlinePolicy−net: 9→11︸ ︷︷ ︸

DPG: 11→12

(16)

Thus, according to the subscript in Equations (15) and (16) and the structure in Figure 4,
the calculation process of the DDPG algorithm can be clearly understood. In this paper,
the adaptive moment estimation (Adam) optimizer used in the online neural networks of
DDPG enables faster convergence to the global optimum.

3.3. Simulation of DDPG Algorithm in Active Vibration Control

To build a simulation model that is consistent with the realistic AVRS, the motor
drive model M(s) and the low-frequency extensive model of the sensor S(s) should be
considered. Suppose that the control blocks of FF and FB are FF(s) and FB(s); then, the
classic structure of AVRS is shown in the black-dotted box in Figure 5.
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Figure 5. The principle of DDPG algorithm application in co-simulation.

Based on the aforementioned FB and FF co-simulation control model, the DDPG
algorithm module was constructed in MATLAB. Through the plant export function, the
M file exported from the model of ADAMS was imported into MATLAB to obtain the
environment required for the simulation and to realize the information exchange between
ADAMS and MATLAB.

Through continuous iterative analysis of the vibration reduction performance of AVRS,
the critical control parameters of FB(s) and FF(s) were updated to make the neural network
learning parameters converge to the global optimum.

3.3.1. The Structure of the Neural Network

The neural network structure of online Policy-net and online Q-net in DDPG is shown
in Figure 6.
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Online Policy-net has one hidden layer with fifty nodes and receives the current state
signal S and outputs the action signal a after the Gaussian distribution and amplitude
restriction. The activation function of hidden layers in the online Policy-net is Relu, and
that of the output layer is also Relu. The value of the online Q-net has the same numbers
of hidden layers and nodes as in the online Policy-net and represents the action reward,
which is used to evaluate the effectiveness of the selected action. The activation function of
the hidden layer in online Q-net is Tanh, and that of the output layer is linear-activated.

3.3.2. Reward Function

The setting of the reward function is crucial; a good design can not only speed up
the training process of the reinforcement learning algorithm but also avoid the situation
of reward-hacking and convergence to a local optimum. The control objective for active
vibration reduction is that the absolute speed of the payload is infinitely close to zero. Then,
the reward function can be set as a linear function of vp in simulation, and its expression is
shown in Equation (17):

R = −
∣∣vp
∣∣− 0.1vp

2 (17)

3.4. The Results of Simulation

In the simulation, white noise signals with amplitudes of 1 and 200 were used to
simulate ground excitation and table disturbance, respectively. More detailed parameters
are shown in Table 1.

Table 1. Specifications of simulation.

MATLAB

Solver ode4 Type Fixed-step

Episode time 2s Fixed-step size 0.001s

ADAMS Model

ADAMS Solver type Fortran Simulation mode Continuous

Animation mode batch Communication
interval 0.001s

DDPG

TargetSmoothFactor 1 × 10−3 Agent sample time 0.001s

MaxEpisodes 10,000 MaxStepsPerEpisode 20

MiniBatchSize 64 DiscountFactor 0.998
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In this study, the DDPG reinforcement learning algorithm simulation was carried out
based on the joint control model, which mainly includes the following two parts: (1) FBC
parameter that is optimized through DDPG under the condition of proper FFC parameter;
(2) FFC and FBC parameters optimize the system simultaneously.

From Figure 7, EpisodeQ0 stands for the prospective discount reward, whose stability
reflects whether the critic network was designed properly. The reinforcement learning re-
ward curve of the FBC proportional parameter under the specified feed-forward parameter
is shown in Figure 7a, and the self-learning episode reward curve of multiple parameters
that contains both the feed-forward gain and the feedback gain is shown in Figure 7b. The
result shows that when multiple parameters are learned at the same time, the system can
still converge to the optimal value range in a long step size.
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4. Experiments

The DDPG reinforcement learning algorithm, which is a type of model-free RL method,
achieves optimal control through continuous interaction with the environment, receives
action from the agent and returns the corresponding reward value of the current state. The
agent only needs to collect and analyze the vibration signals from the ground and platform
to realize self-learning control. The purpose of AVRS is to minimize the vibration of the
platform by regulating the real-time dynamic parameters and changing the output control
force value corresponding to the detection signals. However, in practical applications, con-
sidering the nonlinear characteristics of the inertial system and its multivariable coupling,
it is difficult to accurately evaluate the system performance when the updated frequency of
parameters is too high.

To improve the control robustness of the system and realize the engineering application
of the DDPG control method in the field of vibration reduction, this study aimed to
transform real-time dynamic parameter regulation into optimal parameter adjustment.
Optimizing the reward function overcomes the shortcomings of the DDPG algorithm,
which is highly dependent on the system operating speed and hardware performance, and
makes the intelligent integration of the system more economical.

4.1. Reward Function Optimization

Not only the DDPG algorithm is unsuitable in a random environment, but it facilitates
reward-hacking when the reward function is improperly set in the process of reinforcement
learning. Since the transmissibility curve reflects the modal information about AVRS,
and its corresponding technical indicators are not affected by the form of environmental
excitation signal under the same parameters, it is appropriate for the amplitude curve
of transmissibility to be set as the reference of the reward function. By integrating the
difference decibel value of the amplitude between the passive transmissibility curve and
the active control curve within the specified frequency range, the area size of the enveloped
curve directly reflects the attenuation performance of the AVRS.

Then, the reward function is defined as:

R =

 0 fi< fH, fi ≥ fH
n
∑

i=0
{[Fo( fi)− Fc( fi)] ∗ [lg( fi+1)− lg( fi)]} fL< fi< fH

(18)

In Equation (18), Fo( fi) and Fc( fi) represent the amplitude of passive and active control
transmissibility at fi, respectively. According to the requirements of different technical indi-
cators, the corresponding boundary frequency range [ fL, fH] and the calculation method
can be modified, and the parameters optimized through the DDPG self-learning algorithm,
to achieve the control performance that meets the application requirements.

4.2. Experimental Setup

The AVRS experimental setup consists of four independent vibration isolation units,
controller, payloads, PC, etc. Each isolator is integrated with a steel spring, geophones, and
voice-coil motors. The schematic diagram of the experiment is shown in Figure 8.
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In this experiment, excitation signals generated by the LMS signal system were ampli-
fied and acted on the AVRS substrate by the MB shaker. All internal signals were acquired
by the AD port in the DSP controller and, after frequency expansion, signal decoupling,
and algorithm processing, they were output from the DA port as motor drive signals.

In addition, the PC was used to establish an intelligent agent, which communicates
with the DSP in the controller through the serial port and the CAN port. The CAN port
realizes vibration signal transmission, and the serial port is used to execute the parameter’s
updated commands. The online network parameters are updated at the end of each 100-step
episode. Before starting self-learning control, 2000 random samples should be stored in
replay memory. When the sample size reaches the set value, the agent randomly selects 32
mini-batch samples for DDPG reinforcement learning. Next, two external high-resolution
VSE-15D servo velocity seismometers are used to verify the vibration reduction effect of
the AVRS. Table 2 shows the parameters of the AVRS.
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Table 2. Specifications of components in AVRS.

Components Symbol Parameter Value

Payload m Mass 1750 kg

Helical spring k Stiffness 300,000 N/m
c Damping 490 Ns/m

Voice-coil motor

KT Force constant 80 N/A
RM Resistant 34.5 Ω
LM Inductance 28 mh

Moving distance 28 mm
Frequency range ≤200 Hz

Geophone
fg Natural frequency 4.5 Hz

Gg sensitivity 100.4 V/m/s
Rd Internal resistant 2450 Ω

4.3. Experimental Results

The content of the experiment mainly comprises the following three parts: (1) the
FFC parameter, which is optimized through DDPG under the condition of a proper FBC
parameter; (2) the FBC parameter is optimized in a reasonable FFC parameter; (3) FFC and
FBC parameters optimizing simultaneously.

Figure 9 shows the experimental results of FFC parameter self-learning by the DDPG
algorithm when the FBC proportional gain is fixed at 1.8. Figure 9a–e are the learning
curves of the 0/20/40/80/100th episode, where the horizontal axis is the number of steps,
the red line is the value of the FFC parameter, and the blue line is the corresponding value
of the action reward. Figure 9f reflects the convergence of the FFC parameter in the whole
self-learning process.
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Figure 10 shows that there is an approximate normal envelope distribution relationship
between the FFC parameter and the state reward value. When the parameter is located
between [−15, −5], the active vibration reduction performance becomes better with the
increase in the FFC parameter. When it is bigger than−4, the control performance gradually
deteriorates. When the parameter is at the limit value of −15 or 5, the system state value
is negative, indicating that the system is in a state of vibration amplification or instability.
The parameter range of the maximum state reward value is [−5, −4], as marked in the red
circle, which is consistent with the region corresponding to the parameter convergence
value in Figure 9f, indicating that the DDPG algorithm can track the optimal value range of
single-parameter FFC during self-learning.
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As shown in Figure 11, the FFC proportional control parameter is fixed to−4.5, and the
DDPG optimization learning is carried out when the initial value of the FBC proportional
parameter is 0. Figure 11a–e are also the learning curves of the 0/20/40/80/100th episode.
Figure 11f reflects the convergence range of the FBC parameter at [2, 3].
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The experimental learning curve in Figure 12 can be divided into three regions: the
stable region, the transition region, and the unstable region. It is observed that when the
FBC parameter is less than 2.5, the system is in the stable region, and with the increase
in the FBC parameter, the control performance of the system improves gradually. In the
transition region of [2.5, 6], it is found that there is a similar hysteresis characteristic between
the system state reward and the FBC proportional parameter. Therefore, when the FBC
parameter increases monotonously from 2.5 to 4.5, the system performance deteriorates.
When it is greater than 4.5, the vibration reduction performance of the system starts to
decline sharply, and the vibration amplitude of the platform is constant and amplified
compared with the initial value. When the FBC parameter increases to above 6, the system
is in an unsteady state. Conversely, when the parameter decreases monotonously from 6 to
4.5, the system is still unstable; when it is less than 3, the system gradually returns to the
stable state.
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In Figure 13, the results of the multi-parameter self-learning experiment are shown
when the initial proportional control parameters P of the FBC and FFC are both 0. From
Figure 13a–f, the optimal parameter of FBC is in the range of [2.0, 3.0], and the FFC parame-
ter is located in [−5.0, −4.0]. The results show that the parameters learned simultaneously
have good consistency with the values learned separately.
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Figure 14 is the 3D projected scatter diagram of state reward and the multiple parame-
ters. The red circles in the figure indicate the area where the optimal values are located, and
the identification results are consistent with the final convergence values of the learning
curves. Due to the high-order, nonlinearity, and strong coupling characteristics of the actual
system, its dynamic characteristics are very complex, and it is difficult to obtain accurate
system control parameters. Nevertheless, the above experiments show that a small optimal
value interval can be determined.
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Based on the DDPG self-learning results above, which take the integral area of the
difference between the passive and active vibration transmissibility curves as the reward
function, the vertical FBC parameter of the system is selected as 2.5 and the FFC parameter
as −4.0.

Figure 15 shows the comparison results of vibration transmissibility curves about
internal geophones and external VSE-16D sensors under passive, FFC, FBC, and hybrid
control. The curves in the figure show that the decoupling calculation value of the internal
distributed sensors, which can correctly reflect the actual vibration of the system, has good
consistency with the direct test value of the external sensors. The experimental results
show that the application of the DDPG algorithm in active vibration control is feasible and
effective.
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Figure 15. Contrasts between the transmissibility curves of internal geophones and external VSE-16D
sensors under optimal learning parameters: Passivity, FFC, FBC, hybrid control (FBC + FFC).

Through the DDPG control method, the influence of the control parameters on the
system performance within the set range can be analyzed. When the system structure and
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payload change, the agent can repeat the learning process until the new optimal control
parameters are obtained.

In addition, the final learned parameters can be easily solidified into the static flash to
achieve high-performance offline operation. The theoretical results of the method proposed
in this paper are in good agreement with the experimental measurements and have strong
control robustness in the active vibration reduction field. This method has good application
prospects in mature commercial products.

5. Conclusions

In this study, the dynamic control mechanism of FB and FF was investigated, and a
detailed block diagram of the FB and FF control system was proposed according to the
classification of vibration transmission paths. In addition, based on the united FF and
FB control case, the DDPG algorithm was introduced to perform real-time self-learning
on the system parameters. Since DDPG is not suitable for random signal learning, this
paper proposed a reward function optimization method that is still applicable to the
multi-parameter self-learning process. Simulations and experiments show that the DDPG
algorithm can continuously optimize system parameters through interaction with the
isolator units to achieve effective suppression of platform vibration without the need for
artificial prior knowledge. Therefore, the method presented in this paper has great potential
value in future practical applications because it avoids human interference. The reward
function optimization is crucial in speeding up the DDPG learning process. The setting
method of the reward function proposed in this paper still has the disadvantages of random
errors at low frequencies and calculation errors at high frequencies. Therefore, reasonable
value selection and optimal calculation of the frequency interval will be important directions
in subsequent research.
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